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The combustion of powder, where the surface temperature T s depends 
on the pressure p and the initial temperature T 0, is studied under the 
condition of sinusoidally varying pressure. The nonlinearity of the heat 
conduction equation together with the dependence of the combustion 
velocity u and the surface temperature on both the pressure and initial 
temperature affects the zeroth harmonic and gives rise to higher har- 
monics in the combustion velocity and the temperature of the powder. 
The present paper considers the case of nonlinear resonance, when the 
frequency of the pressure fluctuations is close to the natural vibration 
frequency of the powder. It has been shown that an autonomous oscil- 
latory regime of combustion is possible under constant pressure. 

t oge the r  with the boundary condi t ions  

1. FORMULATION OF PROBLEM AND BASIC EQUA- 
TIONS 

It was shown in [1] that nons ta t ionary  p r o c e s s e s  of 
powder  combus t ion  with v a r i a b l e  su r f ace  t e m p e r a t u r e  
can be s tudied with the s a m e  method as that  used by 
Ze l ' dov i ch  [2,3] fo r  the case  of cons tant  t e m p e r a t u r e  
T s. If al l  i n e r t i a s  excep t  the heat  t r a n s f e r  in the con-  
densed  phase  a r e  neg lec ted ,  i t  can be shown that  the 
su r f ace  t e m p e r a t u r e  Ts  of the powder ,  t oge the r  with 
the combus t ion  ve loc i t y  u dur ing nons ta t ionary  c o m -  
bust ion a r e  d e t e r m i n e d  by the ins tantaneous  va lues  of 
the p r e s s u r e  and in t e rna l  t e m p e r a t u r e  g rad ien t  at the 

powder  s u r f a c e r  The r e l a t i o n s  u(f, p) and Ts(f,  p) can 
be obtained f r o m  the laws of s t e a d y - s t a t e  combus t ion  

u~ p) and T~(T0, p ) b y  r e p l a c i n g  the in i t ia l  t e m -  
p e r a t u r e  To using the fol lowing e x p r e s s i o n  in t e r m s  of 

u, T s, a n d f  

zf ~ = u ~ (T, ~ -- To) (1.1) 

which is  val id  fo r  the s t a t i ona ry  r e g i m e  (~ is  the t h e r -  

ma l  conduct iv i ty  of the powder).  
The l i n e a r i z e d  p r o b l e m  of powder  combus t ion  under  

s inuso ida l ly  v a r y i n g  p r e s s u r e  was s tudied in [4]. In 
the p r e s e n t  pape r  we study non l inear  e f fec t s  including 
non l inea r  r e s o n a n c e  and autonomous osc i l l a t i ons .  

o Let  p~ be the mean  p r e s s u r e  and u ' ,  T s be the c o r -  

r e spond ing  combus t ion  v e l o c i t y  and su r f ace  t e m p e r a -  

tu re  in the s t e a d y - s t a t e  combus t ion  at p r e s s u r e  p~ 
Now we def ine  the d i m e n s i o n l e s s  v a r i a b l e s  

T -- To u ~ 
O=TOT---------o, ~='-~X, !":  t, 

u p O0 (1.2) 

where  x is  the coord ina te  (x < 0), and t is the t ime .  In 

the i n e r t i a l  r eg ion ,  i . e . ,  the heated l a y e r  of the con-  
densed phase ,  we have the fol lowing heat  conduct ion 
equat ion,  

~0 o~e a0 (1.3) ~-~ = ~ - - v @  

T s - -  T o  \ 

The s y s t e m  of equat ions  (1.3), (1.4) b e c o m e s  c o m -  
p le t e  when supp lemented  by the fol lowing r e l a t ions  for  
the combus t ion  ve loc i t y  and su r f ace  t e m p e r a t u r e  in 
t e r m s  of the p r e s s u r e  and g rad ien t  

v = v (% % ~ = ~ (~, n) ( 1 . 5 )  

together with the expression for the pressure which 
will be chosen to have the cosinusoidal form 

~1 = I §  (1.6) 

w h e r e  (2)b,h/., = H is  the p r e s s u r e  ampl i tude.  

The s y s t e m  (1.3)-(1 .6)  t h e o r e t i c a l l y  d e t e r m i n e s  
the t ime  dependence  of combus t ion  ve loc i t y  and pow- 
d e r  t e m p e r a t u r e ,  but it is not poss ib l e  to so lve  this 
s y s t e m  for  a r b i t r a r y  functions (1.5). However ,  i t  is 

pos s ib l e  to expand the solut ion in a s e r i e s  of powers  
of the s m a l l  p r e s s u r e  ampl i tude .  

2. COMBUSTION VELOCITY AND TEMPERATURE 
DISTRIBUTION: THIRD ORDER APPROXIMATION 

A periodic force applied to a nonlinear vibratory 
system gives rise to oscillations at all harmonics. If 
the amplitude of the force is small, the correction to 
the constant component and the second harmonic is 
proportional to the square of the amplitude, and the 
first harmonic, as compared with the linear approxi- 
mation, has a third order correction in terms of the 

amplitude (see [5,6, 7]). 
The steady-state of combustion at pressure ~ = 1 is 

described by the solution 

0 = e ~, v =  1, ~ = t, (p = t .  (2.1) 

When the pressure varies according to (1.6), the 

higher order approximation will be sought in the 

form 

v(~) = I + v l c c o s T ~ +  

+vr~sinT~ ~ w 2 +  v2ccos27~+ v2~sin27~, (2.2) 

(~) = i ~ Olc cos 7"~ + 

+ ~ls sin y~ d- 42 + 02c cos 27~ + ~ sin 27~, (2.3) 

(p(~) = I + q h ~ c o s T ~ §  

+ ~i~ sin 7r --/2 + ~2~ cos 27v + ~,,~ sin 27~, (2.4) 

0 ( ~ )  = e ~'+~'>~ [I + O~(~) cos V~ + 
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4- 0is (~) sin ?~ 4- ~ (g) 4- 
+~02~ (~) cos 27T 4- 0z~ sin 2yz] 

z2 ~ + z 2 - - 2 i ?  = O, 

(2.5) 4R~ + R~ "z - -  4?" = 0. (2.15) 

We subs t i t u t e  e x p r e s s i o n  (2.2) fo r  the v e l o c i t y  and 
(2.5) for the temperature into the heat conduction 
equation, multiply the trigonometric functions, retain- 
ing only the ze ro th ,  1st,  and 2rid h a r m o n i c s ,  and then 
we equate  coe f f i c i en t s  of l ike  t r i g o n o m e t r i c  funct ions .  
Th is  y i e l d s  f ive o r d i n a r y  d i f f e r e n t i a l  equa t ions  fo r  the 
unknowns O~c, 01s, "92, 0~c, and 02s. 

The complex  no ta t ion  

(n = i.2) (2.6) 

enab le s  us  to r e d u c e  the f ive d i f f e r e n t i a l  equat ions  to 
the fol lowing two complex  and one r e a l  d i f f e r en t i a l  
equat ion  

0 t "  ~- 01' - -  i?01 = V 1 - -W~61 '  -~- 

+ v, (w~ + ~2' + ~G) +-~/2t-6t (02" + 0~) + 

+ ~/,~ v2 (gd + 03, (2.7) 

1t~2 H JU ~'2t = 1/4~)1 (0"1 ' "Jr- gl) "~ t/'~-I (01' J r -0 t ) ,  (2 .8)  

0~" 4- 0~' .- 2 iy0 ,  = v 2 - -  t/2//) 1 (01, + Ol) , (2.9) 

where  the p r i m e  deno tes  d i f f e r en t i a t i on  with r e s p e c t  to 
~, and the b a r  i n d i c a t e s  a complex  conjugate .  In the 
l i n e a r  a p p r o x i m a t i o n ,  (2.7) has  the so lu t ion  [4] 

O, = ~ + A t (ez,r - -  t),  A~ = t~ t - -  iv~ I 7 (2.10) 

whe re  

z~ = *]~ (r / B~ --  1) + i/fi, 

/ h  = t t /s ( 1 / t ~  + t - -  l ) l  v, . (2.11) 

It  is  wor th  not ing that  

Zl 2 4- Z 1 - -  iy = 0, 4Ri ~ 4- _Rt2 __ y2 = 0. (2.12) 

Having the e x p r e s s i o n  fo r  0~(~) in the f i r s t  a p p r o x i -  
mat ion ,  we can find ~2(~) and 02(~) in the second  o r d e r  
a p p r o x i m a t i o n  f rom equat ions  (2.8), (2.9). The con-  
s tan t  component  is  found to be 

' [ ' : 2 : ~ 4 -  ~ [ A I F I ( t  4 - z l )  X 

x (eL~ - -  t)  - -  A t v t  (t + zl) (e ~'~ - -  1)1. (2.13) 

The s p a t i a l  d i s t r i b u t i o n  of the second  h a r m o n i c  of 
the t e m p e r a t u r e  in  the condensed  phase  is  

w h e r e  

o:: o.+ 

(2.14) 

F i n a l l y ,  subs t i tu t ing  (2.10), (2.13) into the r i gh t -hand  
s ide  of (2.7) and so lv ing  th is  equat ion,  we obtain the 
ampl i tude  of the f i r s t  h a r m o n i c  with an a c c u r a c y  up to 
and inc luding  th i rd  o r d e r  t e r m s  as  g iven  below 

iVlV2 / \ 

. . . .  ~ ~e~ ~ & ( i + ~ , )  ~ + ~ ( l + ~ ) ~  
1 -U 2gl 47 L P2 X 

x (e ~,~- - -  d '~) v~ 4- ~ (1 4- z~) (e z~ -- e z,~) X 

i ~" x L.~2__ ~_~ I r A  v~A~ (t + zt) - -  ~ v~ ] ,  

{w~ 4- ~, 

i 

I t  fo l lows f r o m  (2.4), (2.5) that  

qh = (1 + ws) Ot + ~(  ~=o' 

0~F~ 00~ 
/2 = w2 + % + - ~  ~=o' q)2 = #2 + ~ k=o 

(2.16) 

The d e r i v a t i v e s  in these  e x p r e s s i o n s  can be ca l cu la t ed  
f r o m  (2.16), (2.13), and (2.14). We then obtain the fo l -  
lowing t h r e e  a l g e b r a i c  equat ions  connec t ing  the nine 
quan t i t i e s :  the cons tant  componen t s ,  the ampl i t udes  
of the f i r s t  two h a r m o n i c s  of the g rad i en t ,  the  su r f ace  
t e m p e r a t u r e ,  and the combus t ion  ve loc i t y  

Alw~zl A1 (t +'21)(21 --  z~) X 
i @ 221 4"r 

" ~ (I + 22) (22-- •247 ~ ( 1  + z,)] 4- 

x A ~ - - ~  - 4 - z l ) - - ' ~  [ "r (1 i viii, 

Z 1 - -  

z~) x 

(2.17) 

h =w~ + q,~ + @ (~v~ + O~vt), (2.18) 

ivlA1 Z A iv1 ~ vlA~ (1 + zl)]. (2.19) 

A f u r t h e r  s ix  equat ions  can be obtained by expanding 
the  funct ions  v(~o,7?) and ~ ( ~ , ~ )  in T a y l o r  s e r i e s  up to 
the t h i rd  o r d e r  t e r m s .  A f t e r  m u l t i p l i c a t i o n  of the t r i g -  
o n o m e t r i c  funct ions  and equat ing coef f i c ien t s  of l ike 
h a r m o n i c s ,  we o b t a i n ,  

• (2(p~1~]1-~- q~12~1) + o~~ (2~lnlnt- + ~x~112)] (2.20) 

Ov 1 rO~v - 
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+ o~V , - - , a , v  - 1  ~ tcPl~h + 9~q:) + b-~ ~h~h_l , (2.21) 

Ov i [O~v 
v~ = - ~  % -- T L'~-'~ ~ ~i~ + 

a~v O~v ~G 
+ 2 ~ q?Vh + ~q:~t .J (2.22) 

for  the combus t ion  veloci ty  where ~h = h(1 + i). F o r  
~l ,  r and ~2 we obtain expres s ions  of the same  form 
but with the de r iva t ives  of v rep laced  by de r iva t ives  
of ~ with r e spec t  to ~0 and V. 

The above nine  equat ions  e a n b e  used to find the con-  
s tant  t e r m s  and the f i r s t  two h a r m o n i c s  w2,vl,  and v2 of 
the combus t ion  veloci ty ,  the t e m p e r a t u r e s  r ~l ,  and ~z, 
and the g rad ien t  f2, ~v~, and ~v2 on the sur face  of the 
powder.  The solut ion of these a lgebra ic  equat ions  is  
s i m p l e r  than the method used to solve Eqs.  (2.7)-(2.9) .  
F i r s t  the l i n e a r  approx imat ions  for 0~, r and v l  a re  
obtained. Then we can find the constant  components  and 
the second o rde r  approx imat ions  for  the second h a r -  
monics ,  and f ina l ly  we obtain the th i rd  o rde r  approxi -  
mat ion  to the f i r s t  ha rmonic .  

3. RESONANCE 

It was shown in [4] that powders having a uniform 

surface temperature represent an oscillatory system 
with natural frequency To and damping decrement k 
given by 

70-- VT ~ r (~ + ~)-(~--~)~ (3.1) 
r ' ~ 2r2 

where k and r a re  p a r a m e t e r s  of the powder c h a r a c t e r -  
iz ing the dependence  of combus t ion  veloci ty and sur face  
t e m p e r a t u r e  on the in i t i a l  t e m p e r a t u r e ,  i . e . ,  

k = (T+ ~ -- To) (a in u~ ( a T + ~  
' ~ ' - ' ~ o / p '  r = taT0 ]p (3.2) 

If the f requency  Y of the applied p r e s s u r e  is close to 
the na tu r a l  f requency  of the powder (Y = "/0 + e, e << 
<< 70) and the damping dec r emen t  k << 70 (the c o m b u s -  
t ion r e g i m e  is close to the l imi t  of s tab i l i ty  r = (k - 
- 1)2/(k + 1)), then the l i nea r  approximat ion  to the f r e -  
quency dependence of the f i r s t  ha rmon ic  of the com-  
bust ion ve loc i ty  has the following r e sonance  c h a r a c t e r  
[4], 

v: (e -- i~) = ) < (k, v, ~t)q~. (3.3) 

The ampl i tude  of the combus t ion  ve loc i ty  depends 
on the p a r a m e t e r s  

(a  In u~ t ( aT+~ ~ (3.4) 
V = \O'O~P /To' ~ = ~ \ O ln p JTo 

which r evea l  a r a t h e r  marked  change of combus t ion  
ve loc i ty  and sur face  t e m p e r a t u r e  with change of p r e s -  
sure .  

Now let  us examine  a non l i nea r  approx imat ion  to 
r e sonance .  As is  known in the theory  of mechan i ca l  
and e l e c t r i c a l  n o n l i n e a r  v ib ra t ions  [5, 6,7] in the case  
of non l i nea r  r e sonance ,  the f i r s t  ha rmon ic  ampl i tude  
is  of the o rde r  to the cube root  of the forc ing  force  

ampli tude,  and the cons tant  t e r m  and second h a r m o n -  
ic a re  of the o rder  of the square  of the f i r s t  ha rmon ic  
ampl i tude .  Consequent ly  equat ions  (2.20)-(2.22) and 
the i r  analogous equat ions  for  the sur face  t e m p e r a t u r e  
can be s impl i f ied .  Indeed, in  taking second-  and th i rd -  
o r de r  de r iva t ives  we mu~t omit  t e r m s  containing Vl, 
such as T/if 2 ~ T/lvl 2 ~ ~ , 3  as well  as t e r m s  of the 
type ~vl. ~ of the o rde r  v l  3 ~ ~h, i . e . ,  of much higher  
order .  

Thus,  the r e l a t i ons  v(~v, ~?) and d(~p, V) yie ld  six 
equat ions  conta in ing  the ampl i tude  of p r e s s u r e  only in 
the f i r s t  power  and in the l i n e a r  t e r m s  

Ov Ov 02v t O~v ~-" 

a~ O~ _ _  0~6 I 036 ~- 
e~ = ~-qD~ + -Nn m-~ ~-~cpd~ + T ~ : %  ~ ,  (3.5) 

Ov 1 O2v - -  

0 6  , . I 02~9 --  
% = ~- S~-V T ~T ~i , (3.6) 

Ov i O~v 

0+ i O~ 
{~ = ~-% 4 0t~ %% (3.7) 

Rela t ions  (2.17)-(2.19)  obtained f rom the heat con-  
duct ion equat ion obviously  r e m a i n  unchanged.  

Now let us de r ive  the equat ion for  the ampli tude of 
the f i r s t  h a r m o n i c  of the combus t ion  ve loc i ty  f rom the 
above equat ions .  In  the l i n e a r  approximat ion  we have 

Ov Ov O~ j Ox~ 
/Yl =~-- (~I -~J ~-~ ~1, 81 = ~-% T 0~(~I' (3.8) 

We wil l  e xp r e s s  the cons tant  component  w2 of the com-  
bus t ion  veloci ty ,  the sur face  t e m p e r a t u r e  ~z, and the 
gradientJ~ in t e r m s  of vl. To this  end we subst i tu te  
the l i nea r  approx imat ions  to ~1 and ml into Eqs.  (2.18) 
and (3.6). 

The las t  two equat ions  in (3.8) yield 

{ OV ~-1 [ Oy /-/. O~ 

The terms containing the pressure amplitude need not 

be retained since in the second approximation they re- 
duce to expressions of the type vl~71 ~ ~?~3 which can 
be neglected in comparison with vl 2 ~ ~?~/~. Thus, 

(2.18) and (3.6) yield three first-order algebraic equa- 
tions for w2, r and J2 containing terms with [vll 2. The 
solution for these equations shows that each constant 
component is proportional to the square of the modulus 
of the amplitude of the first harmonic, i.e., Ivll 2. 

The analogous procedure applied to the equations 
for the second harmonics (2.19) and (3.7) shows that 
the second harmonic of the combustion velocity v 2, 

the temperature d2 and the gradient q~2 on the surface 

of the powder are proportional to the square of the 

amplitude of the first harmonic of the combustion ve- 
locity, i.e., v; 2. 



22 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI  

In Eqs.  (2.17) and (3.5) fo r  the f i r s t  ha rmorhc  the 
cons tan t  componen t s  a r e  a l l  mu l t i p l i ed  by the a m p l i -  
tudes  of the f i r s t  h a r m o n i c s  and the second  h a r m o n i c s  
a r e  m u l t i p l i e d  by the complex  conjugate  amp l i t ude s  of 
the f i r s t  h a r m o n i c s .  Thus,  a l l  t h i r d - o r d e r  t e r m s  wi l l  
be p r o p o r t i o n a l  to v~lvil 2. 

Thus ,  (2.17) and (3.5) y ie ld  

q)l = ~1 "~- AlZl ~- ClV 1 I ~)1 [ 2, 

i~v Ov 
v~ = ~ q~ + ~ -  m + C~.Vl [ v~ i ~ , 

o~ 
~ = ~ r  + N n, + c~,~, I ~ I ~ , (3.9) 

where  the coe f f i c i en t s  C1, C 2 and C 3 depend on the 
f r equency  and the d e r i v a t i v e s  o fv  with r e s p e c t  to ~ and 
r  A s s u m i n g  a and ~ a r e  s m a l l ,  i t  i s  p o s s i b l e  ( see  
[4]) to change f rom r and 7 to k and ~ through the r e -  
l a t ions  

r - - ( ~ - - l ) ~ [  l - ~ 2 ( k - ~ ' ~ ] k + t  \ ~ + , ~ /  

1 /T( /~+~) [ t  ~ (~--~)~ ~__ ~ j .  -- 2 ('~ --  t-.t" (3.10) 
(k--l)"- ]/~'k(k @ t) \ .k@t ] 

ordinary nonlinear vibrations of electrical or mechan- 
ical systems the correction to the frequency is propor- 
tional to the square of the amplitude of vibration. An 
important feature of the theory is the presence in (3.13) 
of a correction to the damping factor which depends on 
the square of the amplitude. This fact could lead to 
autonomous oscillation: when ~2 is negative the damp- 
ing factor decreases with amplitude and when X § 
+ ~21viI 2 = 0, it is possible to have self sustained os- 
cillations, i . e . ,  without any variations in the applied 
pressure. On the other hand, if the steady-state com- 
bustion of the powder is unstable (X < 0), self sus- 
tained oscillations would be possible under the same 
conditions with (~2 > 0. In the following it will be as- 
sumed that X > 0. The consideration of the contrary 
case is analogous. The study of the resonance curves 
is simplified by the following new variables 

then 

V2 [~.z]lv,  I 2 8 F~ = ! l lZ ta21H~ 

(O-~-qV~)2~-(I~yVU)2=W F2 (q=  ,~:T), (3.14) 

In the t h i r d - o r d e r  t e r m s ,  y m u s t  be r e p l a c e d  by the 
fol lowing r e s o n a n c e  f r equency  on the s t ab i l i t y  boundary  
(X = 0) 

V~(k + i) 
To -- (k-- i)~ 

Now we have the fol lowing equat ion for  the a m p l i -  
tude of the f i r s t  h a r m o n i c  

v~ [8 - ~ + ( ~ , ' -  i ~ )  1~I  ~] = ] (k, ~, ,~)n~ (3.11) 

w h e r e  ~1 and ~2 a r e  funct ions  dependent  on k and 
whose  f o r m s  depend  on the n o r m a l  d e r i v a t i v e s  of the 
combus t ion  v e l o c i t y  and s u r f a c e  t e m p e r a t u r e ,  and 

/ (~, ~. ~) = 

m-I(k + i) (k ~ @ 6k @ t) {v (k ~-- t)-~- 

+ [ v ( k - - t ) 2 - - p , k ( k & - t ) l ( 1 4 - i  ]/'k-)}] X 

(3.12) 

is  the s a m e  funct ion as  in the l i n e a r  a p p r o x i m a t i o n  
(3.3). 

By tak ing  the modulus  of e x p r e s s i o n  (3.11) we ob-  
ta in  the equat ion  of the r e s o n a n c e  curve  r e l a t i n g  the 
ampl i tude  of the f i r s t  h a r m o n i c  to f r equency  for  p r e -  
s c r i b e d  damping  d e c r e m e n t  2~ and p r e s s u r e  ampl i tude  
H, i . e . ,  

Thus ,  c o n s i d e r a t i o n  of non l inea r  e f fec t s  l e a d s  to a 
r e l a t i o n  be tween  f r equency  and damping  f a c t o r  at r e s -  
onance on the ampl i tude  of v ib ra t i on .  As  in the ca se  of 

whe re  the p lus  s ign r e f e r s  to a pos i t i ve  va lue  of ~2 
and the minus  s ign  r e f e r s  to a nega t ive  va lue  of th is  
coef f ic ien t .  F r o m  (3.14), the dependence  of f r equency  
on ampl i tude  of v i b r a t i o n  i s  

~ = - q v : +  V - ~ / v ~ - ( t + v ~ )  ~ . (3.15) 

The s ign of q is  of no g r e a t  s ign i f i cance ,  s ince  
changing i ts  s ign,  which is equiva len t  to changing that  
of ~ ~, has  the s a m e  effect  a s  changing the s ign of the 
f r equency ,  i . e . ,  the r e s o n a n c e  curve  i s  r e f l e c t e d  
about the v e r t i c a l  ax is .  In the fol lowing it wi l l  be a s -  
sumed  that  q is  pos i t i ve .  

F i r s t  le t  us c o n s i d e r  the ca se  where  ~2 is  pos i t ive  
(the damping  i n c r e a s e s  with ampl i tude) .  If fo r  s m a l l  
p r e s s u r e  a mp l i t ude s  we neg lec t  p o w e r s  of V 2 in (3.14), 
we obta in  the fol lowing f i r s t  a p p r o x i m a t i o n  for  r e s o -  
nance  

V 2 (t -~ Q~) = F 2 . (3.16) 

The ampl i tude  is a m a x i m u m  when at  ze ro  f requency .  
An i n c r e a s e  in p r e s s u r e  ampl i tude  l e a d s  to a d i s p l a c e -  
men t  of the f r equency  at  which the ampl i tude  of o s c i l -  
l a t ion  i s  a m a x i m u m .  F r o m  (3.14) we have 

dV ~ _ 2V 2 (P. -~- qV 2) 
~-~.q = 3(q~@i)V a ~ 4(q.o+i)V2+Q2_~l . (3.17) 

The m a x i m u m  ampl i tude  o c c u r s  when 

De = -- qVe ~ �9 (3.18) 

Subs t i tu t ion  of th is  equat ion into (3.14) y i e ld s  the 
fol lowing r e l a t i o n  be tween  the m a x i m u m  ampl i tude  of 
v i b r a t i o n  and the given p r e s s u r e  ampl i tude ,  

V~ 2 (1 @ v~e) 2 = F 2. (3.19) 
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The d e r i v a t i v e  (3.17) b e c o m e s  inf ini te  when 

3(q~ + t) V~ ~ + 4 ( q Q ~ + i )  V~ ~ +  ~ +  t = O. (3.20) 

The solut ion of this  equat ion toge the r  with (3.14) 
y ie lds  the c o o r d i n a t e s  of points  on the ampl i tude  cu rve  
having an infini te  g rad ien t  for  g iven va lues  of F and q. 
We wil l  d e t e r m i n e  under  what condit ions such points  
ex is t .  (These  points  a re  of impor t ance  when studying 
the s tab i l i ty  of s t a t e s  of osc i l la t ion .  ) Eq. (3.20) is 
quadra t ic  in u and has  two equal  pos i t ive  roo t s  when 

t}iz (q2 __ 3) + 8q~Q~ --  3q ~ + i = O, 

qO~ + I ~ 0.  

Moreover, 

2 Q~ = __ 4q + tf3-(q ~ + i ) .  (3.21) 
V~*~ = }/3(q -- V 3 ( '  q'-' - 3 

Thus,  points  with infini te  rad ian t  ex i s t  only when 
q > (3) t/2, i . e . ,  only for  suf f ic ient ly  l a rge  r a t i o s  

a l / a 2 .  F o r  a p r e s c r i b e d  va lue  of q, such points  occur  
only when the p r e s s u r e  ampli tude exceeds  the c r i t i c a l  

va lue  

F~. = 8(q~ + 1) (3.22) 
3 V~(q - ~3-)~ 

which can be obtained by subst i tu t ing  (3.21) into (3.14). 
When q < (3) t /z  the r e s o n a n c e  cu rve  has no point  of 
inf ini te  g rad ien t  i r r e s p e c t i v e  of the p r e s s u r e  a m p l i -  

tude. 
F i g u r e  1 shows the r e s o n a n c e  curve  for  q = 10. The 

cu rves  1 - 4  a r e  equal  to 0.05, 0.2, 0.4, and 0.8, r e -  
spec t i ve ly  fo r  va lues  of F 2. Curve e is the locus of 
m a x i m a  on the r e s o n a n c e  c u r v e s ,  and the points  of in-  
f ini te  g rad ien t  l ie  on the curve  i. The c r i t i c a l  va lue  of 

the squa re  of the p r e s s u r e  ampl i tude  is F~ = 0,227. 
F i g u r e  2 shows the r e s o n a n c e  cu rve  for  q = 1. The  

c u r v e s  1, 2, 3 c o r r e s p o n d  to va lues  of F 2 equal  to 

0.25, 1.00, and 4.00, r e s p e c t i v e l y .  

I ~ - . ~ " - . , J  l--asV - - ~  7 

;JT  
- / t /  I, .L I x  

,! 
- ~  -2 g 2 

Fig.  1 

It is worth comparing the obtained results with the 

usual nonlinear resonance results. In the nonlinear 

vibration of electrical and mechanical systems, the 

damping coefficient does not change with the amplitude 

of oscillation. Thus, a~ = O and q = ~, i. e., resonance 

of the type shown in Fig .  1 occu r s ,  and f o r  suf f ic ien t ly  

l a rge  ampl i tudes  of the d r i v ing  fo rce  the r e s o n a n c e  
cu rve  has two points  with infinite r ad iance  and the s e g -  
men ted  c u r v e  be tween  these  points  c o r r e s p o n d s  to un- 
s table  o sc i l l a t i ons .  In the case  of the combus t ion  of 
powders ,  the damping coef f ic ien t  changes  with the a m -  
pl i tude.  When a l / a x  < (3) 1/2, the broadening  of the 
r e s o n a n c e  cu rve  with i n c r e a s i n g  ampl i tude  compen -  
sa t e s  for  its d i s to r t ion ,  and t he r e  a r e  no points  with 
infinite g rad ien t .  F o r  the i n v e r s e  r e l a t i on  between a l  
and a 2 ( s t rong  slope and gent le  broadening)  t he r e  a r e  
such points .  The va lue  q = ~ c o r r e s p o n d s  to the case  
w h e r e  the damping  coef f ic ien t  does  not d e c r e a s e  with 
ampl i tude  and the above fo rmu la s  r educe  to the w e l l -  
known e x p r e s s i o n  in the theory  of o r d i n a r y  non l inear  

v ib ra t ions .  

/ / 
/ J 

t / 

V 

\ 

, \ \  

Fig .  2 

Now we wi l l  cons ide r  the r e s o n a n c e  cu rve  fo r  a2 < 
< 0, i . e . ,  the Case when the damping  coef f ic ien t  de -  
c r e a s e s  with the ampl i tude  of v ib ra t ion .  The e x t r e m a l  
va lue  of the ampl i tude  can be d e t e r m i n e d  f rom the r e -  

la t ions  

~ ----- - -  qVe 2, V~ 2 (i - -  V~) 2 = Y ~. (3.23) 

The second r e l a t i o n  can,  depending on the va lue  of 
F ,  have e i t h e r  one o r  th ree  pos i t ive  roots  Ve 2. A n e l e -  
m e n t a r y  inves t iga t ion  shows that  for  s m a l l  va lues  of 

the p r e s s u r e  ampl i tude ,  

F ~" F,, F~ 2 = ~/27 (3.24) 

and the re  a r e  t h r ee  roo ts .  When F > F s t he r e  is  only 

one root .  
The coo rd ina t e s  of points  with infinite g rad ien t  can 

be found f r o m  the solut ion of the fol lowing equat ions ,  

(Qi  + qVi2) 2 + ( i  - -  Vi~) ~ = F 2 1 Vi  e 

3 ( q O - + l ) V ~ 4 + 4 ( q . Q ~ - - l ) V ~ + Q ~ + t  = 0  . (3.25) 

When q2 > 3, the second equat ion has a graph with 

b r a n c h e s  going to infinity.  The m i n i m a l  va lue  of a i  
and the c o r r e s p o n d i n g  va lues  of Vi 2 and F i  2 a r e  

Qi* = 4q-- V3-(q 2 1) , 
q2--3 

2 Fi" = 8(q~ + i) (3.26) 
VW - V3(q  + V ~  ' 3 V3(q  + V3-) ~ 

When q2 < 3, the curve of Vi(~ i) is closed. The extreme 
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v a l u e s  of  ~ i  a n d  t h e  c o r r e s p o n d i n g  v a l u e s  of Vi  2 a n d  

F i  2 a r e  

Z H U R N A L  P R I K L A D N O I  M E K H A N I K I  I T E K H N I C H E S K O I  F I Z I K I  

~i* = 4q T ]/'3"(q~ ~- t) 
q: --  3 

V~.~  ~ 2 F i  ~ = 8 (q~" ~I- t) (3 .27 )  
V~( C-g+ q) ' 3 VT( r q)~ 

Figures 3 and 4 show the resonance curves for az < O. Figure 3 is 
for q = 3 (the values of F 2 on curves 1, 2, 3 are 0.05, 4/27, 0.5, re- 
spectively). Curve i passing through points of infinite gradient is open 
(q > (@/z). Figure 4 is for q = I (the values of F z on curves 1 through 
5 are 0.02, 4/27, 1.00, 4.00, and 8.0(3, respectively) and the locus 

V 
h ~  ! 

\ N  bN'% 

-4 -2 9 2 

F i g .  3 

of points with infinite gradient is a closed curve. In other words, the 
resonance curves corresponding to large amplitudes of the forcing func- 
tion will always have two points with infinite gradient provided q > 
> (3)i/z. If on the contrary q < (3) i /z ,  there is a critical value of the 
excitation above which there are no such points on the resonance curve. 

The most interesting property of the resonance curves for a z < 0 
is their separation into two branches when F < F s = 4/z 7 (curve 1). The 
lower branch with small amplitudes of vibration can also be obtained 
in the linear approximation (for sufficiently small F). On the other 
hand the closed contour around the point ( -q ,  1) is a consequence of the 
nonlinearity of the theory. In fact, when the excitation is absent, the 
resonance curves degenerate into the line V = 0 and the point ( - q ,  1), 

~ V 

-2 0 2 

I',,,t 

-4 

F i g .  4 

i .  e . ,  the system can execute  free vibrations with amplitude and fre- 
quency 

]vii= ~ ' / [  a~ 1, s = - - q L .  

Moreover, the effective damping coefficient vanishes to second- 
order accuracy in the square of the vibration amplitude. Such a motion 
of the system is usually called autonomous. 

Resonance curves of this type are also encountered in the theory of 
nonlinear vibrations of electrical systems. In [6], for example, an 
autonomous system consisting of a Valve oscillator with negative feed- 
back is studied. An alternating voltage is injected into the circuit. 

An important question in the theory of nonlinear vibrations is the 
study of the stability of processes on different sections of the resonance 
curve. This requires a special investigation since mechanical and 
eleetxical systems are governed by ordinary differential equations; 
whereas, we are studying oscillatory processes described by nonlinear 
partial differential equations and nonlinear restraints between the com- 
bustion velocity, the temperature, and gradient on the surface of the 
powder. The question of self-excited vibrations is connected with the 
sign of lambda. 

4. CALCULATION OF THE COEFFICIENTS r AND c~ z 

The form of these coefficients is determined by the derivatives up 
to the third order of the functions vUP, r/) and ~(~0, ~). There is no 
point in calculating these coefficients in the general case since this 
would lead to unwieldy expressions. However, at present there is no 
theory which would give concrete expressions for the dependence of 
the combustion velocity and surface temperature on the gradient and 
pressure. For this reason the coefficients a 1 and az  have been com- 
puted for particular types of functions v(~, ~) and ~(~o, 77) which, with 

a view to application, are similar to the experimental relations. 

I! 
g 

-/0 

-2g k I 

F i g .  5 

The experimental data on the combustion velocity of powders in 
the stationary state can be represented in the form 

u ~ (To, p) = .,4 (pO)* e=To . (4.1) 

Measurements of the surface temperature of the powder for different 
initial temperatures and pressures have been carried out recently [8]. 
In view of the unavoidable experimental uncertainty it is not possible 
to get information on the behavior of the function T~ (T 0, p) with suf- 
ficient accuracy. Therefore the function has been represented in the 
form 

Ts* = To -Jr" B (pO)l'. e~To , (4.2) 

The parameters B, ~t, 8 can be chosen to fit the experimental data 
with sufficient accuracy, and the form of this function is convenient 
for computations. The same applies to (4.1). 

With (1.1) and the dimensionless variables we obtain 

eO = @e(r_ l  ) (~-v/v) (4.3) v = ~lve/c (o-~/v), %-- 

where k, r, u and ~ are given in (3.2) and (3.4). 
Expansion of these functions in series gives six algebraic equations 

as in (3.5)-(3.7) in which the particular expressions (4.3) are to be 
used. The subsequent course of the computations is as follows: one is 
led to algebraic rxansformations of the complex functions depending 
only on the parameter k since in the third-order terms r and y are to be 
replaced by (k - 1)a/(k + 1) and (k)t/Z(k + 1)/(k - 1) z . The parame- 

ters v and g enter in the remit in the same way as in the linear ap- 
proximation (3.11), (3.12). Simple but laborious calculations lead to 
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extremely unwieldy expressions for cq(k) and az(k). It has fieen shown 
that each coefficient can be written as a fraction, whose numerator 
and the denominator are the sums of products of various powers of k 

and polynomials of order six and ten in k. The results of the numerical  
calculations are shown in Fig. 8 in the form of graphs of ( -a l ) /? '0  
and a2/7/0 versus k. When k - t << 1, we have the asymptotic expres- 
sions 

al 0.334 ce~ t .94 (4.4) 
~0 ( k  - 1 ) 4 ,  ~-T = ( V - - = ~ l )  ~ " 

free oscillations, the pendulum gaming energy in the region of nega-  
t ive viscosity and dissipating it about the equilibrium position. Cor- 
respondingly, it  can be shown that the powder combustion with k < 1 
can also exbAbit the same behavior. 

In conclusion it is to be noted that, as in any nonlinear system, 
the powder must exhibit resonance for frequencies of pressure variation 
equal to Y~P/q where p and q are integers. These ultza- and sonic 
oscillations are weIl-known in the theory of electrical and mechanica l  
oscillations. The method, explained in the present paper, enables one 
also to study these effects in the combustion processes of powders. 

T h e  a u t h o r  w i s h e s  to  t h a n k  Y a .  V.  Z e l ' d o v i c h ,  

G .  I .  B a r e n b I a t t ,  A .  S.  K o m p a n e i t s ,  a n d  O. I.  L e i -  

p u n s k i i  f o r  f r u i t f u I  d i s c u s s i o n  a n d  a d v i c e .  

The graphs show that the correction to the damping decrement 
azl v~ z can be either positive or negative. When c~ z > 0, we have 
q > (3)*/z. Thus for the present model of the powder represented by re- 
lations (4.3), either of the resonance curves in Figs. 1, 3, and 4 is 
possible. 

The parameters k and r can be varied in experiments by means of 
heating or cooling of the powder. Each value of the initial temperature 
T o of the powder corresponds to a point in the kr-plane Experiments 
[8] show that an increase in T o leads (in the case of powder H) to an 
increase in the parameters k and r, and for sufficiently high temperatures 
the combustion occurs close to the stability l imit r (k + 1) = (k - 1) ~, 
Thus it is to be expected that autonomous oscillations could be en- 
countered in combustion experiments. In [8] it was shown that the com-  
bustion of powder H at pressure p = 1 aim and T o < 50 ~ C was ac-  
companied by pulsations at a frequency of about one hertz. This cot- 
responds with the expected frequency of autonomous oscillations. In 
fact, the frequency of vibration is of the order (u~ When 
x ~  10 -3 cm2/sec  and u ~ ~ 5.10 -2 cm/sec ,  we have y ~ 2 sec-: .  

The above reasoning applies to the case k > 1, i . e . ,  to the region 
in which the combustion can execute free oscillations. However, the 
combustion can exhibit autonomous oscillations also when k < 1. The 
nonlinear effects can cause the damping decrement to decrease and 
vanish even if small  oscillations are not possible. This can be illustrated 
by a simple pendulum suspended in a medium whose viscosity decreases 
with height. If the viscosity about the equilibrium position is sufficiently 
large, small  oscillations about this position will be aperiodic. However, 
for sufficiently large amplitudes the pendulum could move in regions of 
negative damping. In this case it is possible to have large undamped 
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