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NONLINEAR OSCILLATIONS OF COMBUSTION VELOCITY OF POWDER
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The combustion of powder, where the surface temperature Ty depends
on the pressure p and the initial temperature Ty, is studied under the
condition of sinusoidally varying pressure. The nonlinearity of the heat
conduction equation together with the dependence of the combustion
velocity u and the sutface temperature on both the pressure and initial
temperature affects the zeroth harmonic and gives rise to higher har-
monics in the combustion velocity and the temperature of the powder.
The present paper considers the case of nonlinear resonance, when the
frequency of the pressure fluctuations is close to the natural vibration
frequency of the powder. It has been shown that an autonomous oscil-
latory regime of combustion is possible under constant pressure.

1. FORMULATION OF PROBLEM AND BASIC EQUA-
TIONS

It was shown in {1] that nonstationary processes of
powder combustion with variable surface temperature
can be studied with the same method as that used by
Zel'dovich [2, 3] for the case of constant temperature
Tg. If all inertias except the heat transfer in the con-
densed phase are neglected, it can be shown that the
surface temperature Tg of the powder, together with
the combustion velocity u during nonstationary com-
bustion are determined by the instantaneous values of
the pressure and internal temperature gradient at the
powder surface £ The relations u(f, p) and Tg(f,p) can
be obtained from the laws of steady-state combustion
u’(Ty, p) and Tg(T,, p) by replacing the initial tem-
perature Ty using the following expression in terms of
u, Tg, and f

wf® = u® (T — T (1.1)
which is valid for the stationary regime (% is the ther-
mal conductivity of the powder).

The linearized problem of powder combustion under
sinusoidally varying pressure was studied in [4]. In
the present paper we study nonlinear effects including
nonlinear resonance and autonomous oscillations.

Let p° be the mean pressure and u°, Ty be the cor-
responding combustion velocity and surface tempera-
ture in the steady-state combustion at pressure p°.

Now we define the dimensionless variables

T—Tg u° WP

b=go—7r, %% =7

£,

2

6
9= ZF o (1.2)

u
V==,
="

-2
n_‘pu7

Y

where x is the coordinate (x < 0), and t is the time. In
the inertial region, i.e., the heated layer of the con-

densed phase, we have the following heat conduction
equation,

39 a0 i
__=——2_z;(E

5 = 5E (1.3)

together with the boundary conditions

Bl =1,

8lers 2o =0 (ﬁsz—T.))'

=T, (1.4)

The system of equations (1.3), (1.4) becomes com-
plete when supplemented by the following relations for
the combustion velocity and surface temperature in
terms of the pressure and gradient

% =7 (p, 1) (1.5)

v=v(p, 1),
together with the expression for the pressure which
will be chosen to have the cosinusoidal form

1 =1 -+ kh(cos yT + sin y7) (1.6)
where (2)1/2h = H is the pressure amplitude.

The system (1.3)—(1.8) theoretically determines
the time dependence of combustion velocity and pow-
der temperature, but it is not possible to solve this
system for arbitrary functions (1.5). However, it is
possible to expand the solution in a series of powers
of the small pressure amplitude.

2. COMBUSTION VELOCITY AND TEMPERATURE
DISTRIBUTION: THIRD ORDER APPROXIMATION

A periodic force applied to a nonlinear vibratory
system gives rise to oscillations at all harmonics. If
the amplitude of the force is small, the correction to
the constant component and the second harmonic is
proportional to the square of the amplitude, and the
first harmonic, as compared with the linear approxi-
mation, has a third order correction in terms of the
amplitude (see [5,6,7]).

The steady-state of combustion at pressure 7 =1 is
described by the solution

B=e, v=1, H=1, ¢=1. (2.1)

When the pressure varies according to (1.6), the
higher order approximation will be sought in the
form

v(t) =1 4 vy, cos yt +

+ vy, sin T - wy - vy, 08 29T 4 vy sin 297, (2.2)
O (x) =1 + By, cos yt +

+ By, sin yT P, + Oy cos 2yt 4§y sin 297, (2.3)
9 (1) = 1 + @ cos yT +

+ @ Sin YT + fo - @y COS 29T + @, sin 297, (2.4)

0 (Ey1) = el [1 + 0,,(E) cos vy +
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+ 845 (8) sin yv + Wy (8) +
+.8,c (§) cos 2yt 4 By, sin 2y7] (2.5)

We substitute expression (2.2) for the velocity and
(2.5) for the temperature into the heat conduction
equation, multiply the trigonometric functions, retain-
ing only the zeroth, 1st, and 2nd harmonics, and then
we equate coefficients of like trigonometric functions.
This yields five ordinary differential equations for the
unknowns 0y¢, 015, ¥g, Osc, and fsg.

The complex notation

Vn == Uys o+ LU
'ﬁn = ﬁns + 10

Gn = em + iencv

_ (n=12) (2.6)
Pr = Qns + Qre,

enables us to reduce the five differential equations to
the following two complex and one real differential
equation
8, + 0 — iv0; = v, —wyb, +
+ ooy Wy + Wy + W) 1,00, (8, + 6, +

+ Yqi v, 8y + 8y, (2.7)
Y+ W, =, B +8) + Y (8 40y, (2.8)
8, -+ 0y — 2iy8, = v, — Yyiv, 0, +8,),  (2.9)

where the prime denotes differentiation with respect to
£, and the bar indicates a complex conjugate. In the
linear approximation, (2.7) has the solution [4]

0, =0, + A, (% —1), A, =9 —iv,/y (2.10)
where
zy=a (v [ By—1) + iRy,
Ry= 1" (Y16 -1 — )] (2.11)
It is worth noting that
2?4z, — iy =0, 4RAHRZ2— 9y =0, (2.12)

Having the expression for 644) in the first approxi-
mation, we can find ¥,£) and 6y(£) in the second order
approximation from equations (2.8), (2.9). The con-
stant component is found to be

W =Py -+ %,[Zﬂfl (1 +23) x

X (€55 — 1) — Ay (1 + ) (€** — 1)), (2.13)
The spatial distribution of the second harmonic of

the temperature in the condensed phase is

= (4, 22
0=+ [ 4, 'r)x
A )
X (et — 1) -%TJ (1 + zp) (2% — e25%) (2.14)
where
- vy SN 1 SR,
Az-ﬁ2—§?, Z'Z"_2'(Rz )+132,

By=4 o Ti—n]"

28 + 2, — 2iy = 0,

4Rj 4 Ry — byt = 0 (2.15)

Finally, substituting (2.10), (2.13)into the right-hand
side of (2.7) and solving this equation, we obtain the
amplitude of the first harmonic with an accuracy up to
and including third order terms as given below

B, — O +(A1+A3———L—v’—vz)( f-1)—
. %Eez,i — éi;@[ (1 + Zl)1
X (e5 — %) + (1 29) (7% — e%) X
x[Ag—8 (1  2)— o],
Ag=— vl{wz TP — Ml -

— ,fT [t +2)— Ao +2)]) . (2.16)

It follows from (2.4), (2.5) that

o
q>1.=(1+wz)m+a%‘

g=0’

Y,

hr=wt bt 2 2

=b+ 5 TE fg=0

The derivatives in these expressions can be calculated
from (2.16), (2.13), and (2.14). We then obtain the fol-
lowing three algebraic equations connecting the nine
quantities: the constant components, the amplitudes

of the first two harmonics of the gradient, the surface
temperature, and the combustion velocity

=01 (1 +wy) + Aizs + (A3 _%> 2y —

_ Awm Ad4R)E@E—)
14-22; 4y

x[vz—{— g;fa 4 21)] + R+ (B 2)

x[ 4 =52 (1 + 20— 2 007], (2.17)

fo =ws + Py + % (81 + 0101), (2.18)

Lv1A1 iny

B= O+ n[ A~ B2 A+ )] (2.19)
A further six equations can be obtained by expanding
the functions v(p,n) and 4(p,n) in Taylor series up to
the third order terms. After multiplication of the trig-
onometric functions and equating coefficients of like

harmonics, we obtain,

@1 + 111 + aq,z(fplfz wl%) +

621;

+

iy, 178 o~ e
(mf + %)+ 5|50 0 g

— — a —_ —
X e + o) + (,(Tag-@ (emm + ‘1’1"112)} (2.20)

7] , 2y =
wz-':%fz‘r {aq)chlq)l_}‘
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A (2.21)
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% 8%
+2 Fpon P -+ Wnlﬂ (2.22)

for the combustion velocity where 1y = h(1 + i). For
#, ¢ and ¢ we obtain expressions of the same form
but with the derivatives of v replaced by derivatives
of 4 with respect to ¢ and 7.

The above nine equations canbe used to find the con-
stant terms and the first two harmonics wy, vy, and v, of
the combustion velocity, the temperatures ¥, ¢y, and ¥,
and the gradient fy, ¢, and ¢ on the surface of the
powder. The solution of these algebraic equations is
simpler than the method used to solve Egs. (2.7)—(2.9).
First the linear approximations for 64, ¢, and vy are
obtained. Thenwe canfind the constant components and
the second order approximations for the second har-
monics, and finally we obtain the third order approxi-
mation to the first harmonic.

3. RESONANCE

It was shown in [4] that powders having a uniform
surface temperature represent an oscillatory system
with natural frequency vy and damping decrement A
given by

_VE Ao T —(k— 1)

r’ op?

(3.1}

where k and r are parameters of the powder character-
izing the dependence of combustion velocity and surface
temperature on the initial temperature, i.e.,

k= (Tso_ TO) (3 In u") ,
A ]

T, (3.2)

aT.°
T (aTE ),,‘
If the frequency v of the applied pressure is close to
the natural frequency of the powder (v = v + g, & «
<« 7,) and the damping decrement A <« 7y, (the combus-
tion regime is close to the limit of stability r = (k —
- 1)*/(k + 1)), then the linear approximation to the fre-
quency dependence of the first harmonic of the com~
bustion velocity has the following resonance character

[4],

vy (e — A = f(k, v, uYn;. (3.3)

The amplitude of the combustion velocity depends
on the parameters

V=gl mrren (B, B9
which reveal a rather marked change of combustion
velocity and surface temperature with change of pres-
sure.

Now let us examine a nonlinear approximation to
resonance. As is known in the theory of mechanical
and electrical nonlinear vibrations [5,6,7] in the case
of nonlinear resonance, the first harmonic amplitude
is of the order to the cube root of the forcing force

amplitude, and the constant term and second harmon-
ic are of the order of the square of the first harmonic
amplitude. Consequently equations (2.20)—(2.22) and
their analogous equations for the surface temperature
can be simplified. Indeed, in taking second- and third-
order derivatives we must omit terms containing 74,
such as 1M/ ~ Ny ~ n3/% as well as terms of the
type @/, of the order v{ ~ 71y, i.e., of much higher
order,

Thus, the relations v(@,n) and #(¢,n) yield six
equations containing the amplitude of pressure only in
the first power and in the linear terms

] dv i 1 9%
U1:(%(P1+ﬁ‘ 7]1+'5q;§q31f2+'§(3723%2¢1,

ad 29 1 93¢

‘3\1=;9—(,7CP1+*6'6711+%%‘P17‘2+?W(P1261, (3.5)
wy = %fz"i‘ Z’%@l—q—)h
q'zxg%f2+-}%¢1$1= (3.6)
UzZ%%—"Z‘g—zﬂPﬁ
ﬁz=§%% ——f;%gz P 3.7

Relations (2.17)—(2.19) obtained from the heat con-
duction equation obviously remain unchanged.

Now let us derive the equation for the amplitude of
the first harmonic of the combustion velocity from the
above equations. In the linear approximation we have

Q1= Ty -+ A1z,

dv v
Uy =% D1 -’.“W N1,

a0 i
ﬁl:d—cﬁ-% +gn—n1-

(3.8)
We will express the constant component wy of the com~
bustion velocity, the surface temperature ¢, and the
gradient f; in terms of vy. To this end we substitute
the linear approximations to #; and ¢; into Egs. (2.18)
and (3.6).

The last two equations in (3.8) yield

P — ( %) 101,
The terms containing the pressure amplitude need not
be retained since in the second approximation they re-
duce to expressions of the type vin; ~ n¥? which can
be neglected in comparison with v;2 ~ n%3, Thus,
(2.18) and (3.8) yield three first-order algebraic equa-
tions for ws, ¥y, and f; containing terms with !v1|2. The
solution for these equations shows that each constant
component is proportional to the square of the modulus
of the amplitude of the first harmonie, i.e., Iviiz.

The analogous procedure applied to the equations
for the second harmonics (2.19) and (3.7) shows that
the second harmonic of the combustion velocity v,
the temperature #; and the gradient ¢, on the surface
of the powder are proportional to the square of the
amplitude of the first harmonic of the combustion ve-
locity, i.e., vlz.
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In Egs. (2.17) and (3.5) for the first harmonic the
constant components are all multiplied by the ampli-
tudes of the first harmonics and the second harmonics
are multiplied by the complex conjugate amplitudes of
the first harmonics. Thus, all third-order terms will
be proportional to v,iv;I2

Thus, (2.17) and (3.5) yield

s= by 4+ 121 4 Crvy |01 %
o o ,
=g @t g+ Cova | v

¢ 8
ﬁl=g%cpl+£]-m+6'3ul]vljz, (3.9)

where the coefficients C;, C, and C; depend on the
frequency and the derivatives of v with respectto < and
¢. Assuming € and A are small, it is possible (see
[4]) to change from r and v to A and & through the re-

lations
r=E= [y g(hmt)s)]

W“‘f“[i (k1> s—z(li:1,.>'kJ. (3.10)
(k—14y Vi (k1) e -4 v

LV
Y =

In the third-order terms, Y must be replaced by the

following resonance frequency on the stability boundary

(A=0)

_ VEE41)
To= k—1p

Now we have the following equation for the ampli-
tude of the first harmonic
vy le — ik + () — doy) |y]%] = f (k, v, wmy (3.11)
where oy and oy are functions dependent on k and
whose forms depend on the normal derivatives of the

combustion velocity and surface temperature, and

fk,vm) =

=[(k +4) (B2 6k - D (v (b2 — 1) -+

+ vk —1R—pk (k11 VE))] X

X[g(/,-_”a.[._ ]/k—(k—1)+i(3/c+15]]-1 (3.12)

is the same function as in the linear approximation
(3.3).

By taking the modulus of expression (3.11) we ob~
tain the equation of the resonance curve relating the
amplitude of the first harmonic to frequency for pre-
scribed damping decrement A and pressure amplitude
H, i.e.,

o (e + o 0% + (A o) v, 2] = | f]2 B2, (3.13)

Thus, consideration of nonlinear effects leads to a
relation between frequency and damping factor at res-
onance on the amplitude of vibration. As in the case of

ordinary nonlinear vibrations of electrical or mechan-
ical systems the correction to the frequency is propor-
tional to the square of the amplitude of vibration. An
jimportant feature of the theory is the presence in (3.13)

of a correction to the damping factor which depends on
the square of the amplitude. This fact could lead to
autonomous oscillation: when o, is negative the damp-
ing factor decreases with amplitude and when A +

+ ozzlvﬂz = 0, it is possible to have self sustained os-
cillations, i.e., without any variations in the applied
pressure. On the other hand, if the steady-state com-
bustion of the powder is unstable (A < 0), self sus-
tained oscillations would be possible under the same
conditions with oy > 0. In the following it will be as-
sumed that A > 0. The consideration of the contrary
case is analogous. The study of the resonance curves
is simplified by the following new variables

F?— VP aa| He |

EES _ 8
V2_-_——”— Q-Tv _ A3 3

)“ v
then

@+ qV+ (1 V2 =y

where the plus sign refers to a positive value of oy

and the minus sign refers to a negative value of this
coefficient. From (3.14), the dependence of frequency
on amplitude of vibration is
Q=— g2+ VFEVE (1 LV . (3.15)
The sign of q is of no great significance, since
changing its sign, which is equivalent to changing that
of o, has the same effect as changing the sign of the

frequency, i.e., the resonance curve is reflected

about the vertical axis. In the following it will be as~
sumed that q is positive.

First let us consider the case where «3 is positive
(the damping increases with amplitude). If for smail

pressure amplitudes we neglect powers of v%in (3.14),
we obtain the following first approximation for reso-
nance

VE(1 4 QY = F2. (3.16)

The amplitude is amaximum when at zero frequency.

An increase in pressure amplitude leads to a displace-
ment of the frequency at which the amplitude of oscil-

lation is a maximum. From (3.14) we have

av: —2V2(Q ¢V
WY T @DV A DVE LR 1 (3.17)
The maximum amplitude occurs when
Q= —gqV2r. (3.18)

Substitution of this equation into (3.14) yields the

following relation between the maximum amplitude of
vibration and the given pressure amplitude,

Ve + V2= Fr. (3.19)
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The derivative (3.17) becomes infinite when

@+ DV +H 4@ +DVE+ Q4 +1=0. (3.20)
The solution of this equation together with (3.14)

yields the coordinates of points on the amplitude curve
having an infinite gradient for given values of ¥ and q.
We will determine under what conditions such points
exist. (These points are of importance when studying
the stability of states of oscillation. ) Eq. (3.20) is
guadratic in Viz and has two equal positive roots when

Q2 (¢ — 3) + 8¢Q; — 3¢ + 1 =0,
g +1<0.
Moreover,

. 2 4+ V3 + Y

Vi 2 = — — Qi = — . 3.21
V3@—V3) g —3 ®-21)

Thus, points with infinite radiant exist only when

q >(3)!%, i.e., only for sufficiently large ratios
ay/@y. For a prescribed value of g, such points occur
only when the pressure amplitude exceeds the critical

value

8(g% +1)

Fp— . ST
3Vig—vey

(3.22)

which can be obtained by substituting (3.21) into (3.14).
When q < (3)1/2 the resonance curve has no point of
infinite gradient irrespective of the pressure ampli-
tude.

Figure 1 shows the resonance curve for q = 10. The
curves 1—4 are equal to 0,05, 0.2, 0.4, and 0.8, re-
spectively for values of F% Curve e is the locus of
maxima on the resonance curves, and the points of in-
finite gradient lie on the curve i. The critical value of
the square of the pressure amplitude is F{= 0.227.

Figure 2 shows the resonance curve for g = 1. The
curves 1, 2, 3 correspond to values of F? equal to
0.25, 1.00, and 4.00, respectively.
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Fig. 1

It is worth comparing the obtained results with the
usual nonlinear resonance results. In the nonlinear
vibration of electrical and mechanical systems, the
damping coefficient does not change with the amplitude
of oscillation. Thus, ag = 0 and g = =, i.e., resonance

of the type shown in Fig. 1 occurs, and for sufficiently
large amplitudes of the driving force the resonance
curve has two points with infinite radiance and the seg-
mented curve between these points corresponds to un-
stable oscillations. In the case of the combustion of
powders, the damping coefficient changes with the am-
plitude. When a /oy < (3)1/2, the broadening of the
resonance curve with increasing amplitude compen-
sates for its distortion, and there are no points with
infinite gradient. For the inverse relation between a;
and «, (strong slope and gentle broadening) there are
such points. The value g = = corresponds to the case
where the damping coefficient does not decrease with
amplitude and the above formulas reduce to the well-
known expression in the theory of ordinary nonlinear
vibrations.

Fig. 2

Now we will consider the resonance curve for a3 <
<0, i.e., the case when the damping coefficient de-
creases with the amplitude of vibration. The extremal
value of the amplitude can be determined from the re-
lations

Q, = — gV, Vi — V22 = F2 (3.23)
The second relation can, depending on the value of

F, have either one or three positive roots Vel Anele-

mentary investigation shows that for small values of

the pressure amplitude,

F<F, Fe ="*y (3.24)
and there are three roots. When F > Fg there is only
one root.

The coordinates of points with infinite gradient can

be found from the solution of the following equations,

(@ + V) + (1 ViR = P2V
B(q* + Vi +4(g— V-2 +1=0.

! (3.25)

When ¢ > 3, the second equation has a graph with
branches going to infinity. The minimal value of Q4
and the corresponding values of Viz and Fiz are

o _ ba— V3@ 1)
Q, s
2 o 8{g*+ 1)
V.i*z—_—————:—.—r, Fi-:'—_—”—.T_- 3.26)
V3i+ V3 3V3@+V3y (

1

When ¢? < 3, the curve of Vi(Q;) is closed. The extreme
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values of Q; and the corresponding values of Vi% and
Fj
i are

0+ MTF V3@
=1

1

¢*—3
3 2 2 8(g*+1)
V.2 , F2 3.27
¢ V3(V3i9) ' 3V3(V3+ap ( )

Figures 3 and 4 show the resonance curves for o < 0, Figure 3 is
for q = 3 (the values of F? on curves 1, 2, 3 are 0,05, 4/27, 0.5, re~
spectively). Curve i passing through points of infinite gradient is open
(qa > (3)/%). Figure 4 is for q = 1 (the values of [? on curves 1 through
5 are 0.02, 4/27, 1.00, 4.00, and 8.00, respectively) and the locus

:(‘§ 2

N
A

) -]
A3
/"

NS
-4 Z I 2

Fig. 3

of points with infinite gradient is a closed curve. In other words, the
resonance curves corresponding to large amplitudes of the forcing func-
tion will always have two points with infinite gradient provided q >
> (3)1/2. If on the contrary q < (3)1/2, there is a critical value of the
excitation above which there are no such points on the resonance curve.
The most interesting property of the resonance curves for o < 0
is their separation into two branches whenF < Fg = 4/, 7 (curve 1). The
lower branch with small amplitudes of vibration can also be obtained
in the linear approximation (for sufficiently small F). On the other
hand the closed contour around the point(~—g, 1) is a consequence of the
nonlinearity of the theory. In fact, when the excitation is absent, the
resonance curves degenerate into the line V = 0 and the point (=q, 1),

\l

i

,
I

J\

Y/
4
/l
-

- -2 ; 2
Fig. 4

i.e., the system can execute free vibrations with amplitude and fre-
quency

lor]= VAi/lda], g==—gqh.

Moreover, the effective damping coefficient vanishes to second-
order accuracy in the square of the vibration amplitude. Such a motion
of the system is usually called autonomous,

Resonance curves of this type are also encountered in the theory of
nonlinear vibrations of elecirical systems. In[6], for example, an
autonomous system consisting of a valve oscillator with negative feed-
back is studied. An alternating voltage is injected into the circuit.

An important question in the theory of nonlinear vibrations is the
study of the stability of processes on different sections of the resonance
curve. This requires a special investigation since mechanical and
electrical systems are governed by ordinary differential equations;
whereas, we are studying oscillatory processes described by nonlinear
partial differential equations and nonlinear restraints between the com-
bustion velocity, the temperature, and gradient on tie surface of the
powder. The question of self-excited vibrations is connected with the
sign of lambda.

4. CALCULATION OF THE COEFFICIENTS oy AND o3

The form of these coefficients is determined by the derivatives up
to the third order of the functions v(¢, n) and (¢, n). There is no
point in calculating these coefficients in the general case since this
would lead to unwieldy expressions. However, at present there is no
theory which would give concrete expressions for the dependence of
the combustion velocity and surface temperature on the gradient and
pressure. For this reason the coefficients «; and o, have been com-
puted for particular types of functions v(¢, n) and $(®, 1) which, with
a view to application, are similar to the experimental relations,

d N

o
W —\

Fig. 5

The experimental data on the combustion velocity of powders in
the stationary state can be represented in the form

u® (Ty, p) = A (p9)* 70, (4.1)

Measurements of the surface temperature of the powder for different
initial temperatures and pressures have been carried out recently [8].
In view of the unavoidable experimental uncertainty it is not possible
to get information on the behavior of the function Tg (T, p) with suf-
ficient accuracy. Therefore the function has been represented in the
form

Ty® = Ty -+ B (p)* fTo. (4.2)

The parameters B, g, 8 can be chosen to fit the experimental data
with sufficient accuracy, and the form of this function is convenient
for computations. The same applies to (4.1).

with (1. 1) and the dimensionless variables we obtain

¥ (B-ofv) 2 _ PP el™-D) (8-erv) (4.3)

v=1n"¢ »
where k, 1, v and p are given in (3.2) and (3.4).

Expansion of these functions in series gives six algebraic equations
as in (3.5)=(3.7) in which the particular expressions (4.3) are to be
used. The subsequent course of the computations is as follows: one is
led to algebraic transformations of the complex functions depending
only on the parameter k since in the third-order terms r and y are to be
replaced by (k ~ 1)2/(k +1) and (k)l/z(k +1)/(k - 1%, The parame-
ters v and p enter in the result in the same way as in the linear ap-
proximation (3.11), (3.12). Simple but laborious calculations lead to
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extremely unwieldy expressions for ay(k) and e (k). It has been shown
that each coefficient can be written as a fraction, whose numerator
and the denominator are the sums of products of various powers of k

LTt R % T
ro=[5 iz 1)+

and polynomials of order six and ten in k. The results of the numerical
calculations are shown in Fig. 5 in the form of graphs of (=o;)/7,

and oy /Y, versus k. When k - 1 « 1, we have the asymptotic expres-
sions

o 0.334 oy 1.94

= 1y - (4.4)

T e—tpe o

The graphs show that the correction to the damping decrement
gl vj? can be either positive or negative. When o, > 0, we have
q > (3)*/?. Thus for the present model of the powder represented by re-
lations (4.3), either of the resonance curves in Figs. 1, 3, and 4 is
possible.

The parameters k and r can be varied in experiments by means of
heating or cooling of the powder. Each value of the initial temperature
T, of the powder corresponds to a point in the kr-plane. Experiments
[8] show that an increase in T leads (in the case of powder H) to an
increase in the parameters k and r, and for sufficiently high temperatures
the combustion occurs close to the stability limit r (k + 1) = (k = 1)%,
Thus it is to be expected that autonomous oscillations could be en-
countered in combustion experiments. In{8] it was shown that the com-
bustion of powder H at pressure p = 1 atm and T < 50° C was ac-
companied by pulsations at a frequency of about one hertz. This cor-
responds with the expected frequency of autonomous oscillations. In
fact, the frequency of vibration is of the order (u”*/%. When
n~10"?% cm?/sec and u° ~ 5:10°% cm/sec, we have y ~ 2 sec-l.

The above reasoning applies to the case k > 1, i.e., to the region
in which the combustion can execute free oscillations. However, the
combustion can exhibit autonomous oscillations also when k < 1. The
nonlinear effects can cause the damping decrement to decrease and
vanish even if small oscillations are not possible. Thiscan be illustrated
by a simple pendulum suspended in a medium whose viscosity decreases
with height. If the viscosity about the equilibrium position is sufficiently
large, small oscillations about this position will be aperiodic. However,
for suificiently large amplitudes the pendulum could move in regions of
negative damping. In this case it is possible to have large undamped

free oscillations, the pendulum gaining energy in the region of nega-
tive viscosity and dissipating it about the equilibrium position. Cor-
respondingly, it can be shown that the powder combustion with k < 1
can also exhibit the same behavior.

In conclusion it is to be noted that, as in any nonlinear system,
the powder must exhibit resonance for frequencies of pressure variation
equal to y,p/q where p and q are integers., These ulira- and sonic
oscillations are well-known in the theory of electrical and mechanical
oscillations. The method, explained in the present paper, enables one
also to study these effects in the combustion processes of powders.

The author wishes to thank Ya. V. Zel'dovich,
G. 1. Barenblatt, A. S. Kompaneits, and O. 1. Lei-
punskii for fruitful discussion and advice.
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